
RaftRecursiveDomains - draft 1

Raft Recursive DomainsRaft Recursive Domains

On howto replicate between On howto replicate between
separated Raft clustersseparated Raft clusters

© 2016 Samo Pogačnik <samo_pogacnik@t-2.net>

Škofja Loka, 9.12.2016 This work is licensed under a Creative Commons
Attribution 4.0 International License.

RaftRecursiveDomains - draft 2

Overview:Overview:

1.Raft Recursive Domains (replication between separated Raft clusters)

2.Drawing recursive domains

3.Asynchronous vs Synchronous secondary domains and commit modes

4. Inter-domain communication

5.Secondary leader operation – asynchronous domain

6.Primary domain switch-over

7.Still to cover

8.Resources

RaftRecursiveDomains - draft 3

1.1. Raft Recursive Domains (replication between separated Raft clusters) [1/2]:Raft Recursive Domains (replication between separated Raft clusters) [1/2]:

Purpose of this material...
● To explore possibilities
● To look for potential use cases
● To think about possible ways to achieve recursive domain replication
● To explore potential options/modes of recursive domain replication
● To define some terminology
● …

Speaking of terminology inside this material…
● Clusters being subject of replication are called domains
● Replication always takes place from the primary towards the secondary domain
● Domains are being called recursive (domains) in the perspective of how domain replication

recursively triggers secondary domain (Raft consensus algorithm) log replication from within
existing primary domain log replication.

● There may be synchronous vs asynchronous domain replication
● Replication synchronism refers to how secondary domain commits are being in sync with

commits in the primary domain (after users receive confirmations about commits)
● Replication Synchronism always refers to secondary domains, therefore synchronous and

asynchronous (secondary) domains (and commit modes).

RaftRecursiveDomains - draft 4

1.1. Raft Recursive Domains (replication between separated Raft clusters) [2/2]:Raft Recursive Domains (replication between separated Raft clusters) [2/2]:

Regarding possible ways to achieve recursive domain replication...
● There might be two general approaches

1. It seems (to me) more natural to achieve secondary domain replication only via primary
domain leader.
● Why? Primary leader replicates its log towards secondary leader in parallel with primary followers, using

the same techniques as if the secondary leader was a real primary follower.
● This approach is the primary focus of the following material.

Let’s just touch the other approach:
2. How about replication to secondary domain via any of current primary followers instead via

primary leader?
● Primary follower would start log replication towards secondary domain as special kind of a client of the

secondary domain (however a secondary leader should contact primary followers).
● This might work even better for asynchronous replication:

● It would offload some primary leader processing to a primary follower. Actually a different follower
could serve a different secondary domain.

● This approach adds more to the commit latency within the secondary domain
● Adds complexity in finding adequate primary followers, ...

● Regarding synchronous commit mode, it would be necessary to make each primary follower serving
secondary domain, a mandatory member of the commit quorum.

RaftRecursiveDomains - draft 5

- Candidate Cluster Node

2.2. Drawing recursive domains - A legend:Drawing recursive domains - A legend:

- Leader Cluster Node

- Follower Cluster Node

- Cluster / Recursive Domain

- Primary (Domain) Leader (Node)

- Secondary (Domain) Leader (Node)

- Secondary & Primary (Domain) Leader (Node)

- Inter-domain connection
- Asynchronous inter-domain replication
- Synchronous inter-domain replication

RaftRecursiveDomains - draft 6

2.2. Drawing recursive domains - A single domain:Drawing recursive domains - A single domain:

A single 5 node cluster in its current state of node roles.

The same single 5 node cluster exposing only its current
leader and number of cluster nodes.

5

RaftRecursiveDomains - draft 7

2.2. Drawing Recursive domains - Leader based vs Follower basedDrawing Recursive domains - Leader based vs Follower based

5/1

3

5/1

3

or or

RaftRecursiveDomains - draft 8

A layout of 5 recursive domains exposing their current leaders, a number of
each domain nodes, slash a number of their direct subordinate recursive
domains.

5/2

3(/0) 5/1

7(/0)

Primary domain

Secondary domains

Primary domain

Secondary domains

2.2. Drawing recursive domains - Layers of recursive domains:Drawing recursive domains - Layers of recursive domains:

RaftRecursiveDomains - draft 9

2.2. Drawing recursive domains - Same as previous (no leaders exposed):Drawing recursive domains - Same as previous (no leaders exposed):

A layout of 5 recursive domains exposing a number of each domain nodes,
slash a number of their direct subordinate recursive domains.

A(5/2)

B(3) C(5/1)

D(7)

Primary domain

Secondary domains

Primary domain

Secondary domains

RaftRecursiveDomains - draft 10

2.2. Drawing recursive domains - Geographically dislocated clusters B and B’:Drawing recursive domains - Geographically dislocated clusters B and B’:

A layout of 4 recursive domains A, B, B’ and C. Recursive domains B and B’
switch each others Primary/Secondary relation, after connectivity outage
between domain B and domain C. What if there is also a domain B’’?

B(3/1)/1 B’(5/1)/1

A(5/2)

C(3)
1

2

3

RaftRecursiveDomains - draft 11

2.2. Drawing recursive domains - Again some geo-dislocated clusters with clients:Drawing recursive domains - Again some geo-dislocated clusters with clients:

A layout of 3 primary recursive domains A, B and C geographically replicated for
disaster recovery scenario (switching primary roles to domains A’, B’ and C’).

B(3/1)/1 B’(5/1)/1

1

2

B’(5/1)/1
A’(5)/1

B(3/1)/1
A(3)/1

Client pool 3

Client pool 2

Client pool 1

Data centre @ location 1 Data centre @ location 2

RaftRecursiveDomains - draft 12

3.3. Asynchronous vs Synchronous secondary domains and commit modes:Asynchronous vs Synchronous secondary domains and commit modes:

Asynchronous secondary commit mode?
1. In this mode of operation, each commit within the secondary domain happens asynchronously with every

commit within the primary domain.
2. Clients receive commit confirmations after commits have been confirmed within the primary domain only

(majority of just primary nodes) and secondary commits complete eventually (after or even before clients
receive commit confirmations).

A(5/1)

B3
(asynchronous domain)

Primary domain

Secondary domains

C7
(synchronous domain)

Synchronous secondary commit mode?
1. In the synchronous secondary commit mode, clients receive commit confirmations only after a majority of

confirmations from primary nodes has been reached and after all synchronous secondary domains received
commit confirmations from majority of their secondary nodes.

2. When a client successfully commits a new state, it is assured that all synchronous domains already share this
same state.

● Mode of operation does not affect any leader election in any domain (secondary leaders are always
followers within the primary domain and as such they never participate in primary leader elections)!

● Clients commit new states faster in the asynchronous mode!
● Atomicity of client operations over asynchronous domains is lost!

RaftRecursiveDomains - draft 13

4.4. Inter-domain communication:Inter-domain communication:

How to include secondary leaders into the primary domain?
1. Awareness of all secondary domains need to be stored within the primary domain!
2. Secondary leaders get elected via normal Raft elections within each secondary domain.
3. Secondary leaders connect to the primary domain’s leader via the same mechanisms as clients (i.e.

connect to any primary domain node and redirect to their leader) – a unique domain ID separates
secondary leaders from clients.

A(5/1)

B3

Primary domain

Secondary domains

C7

How does a secondary connection affect primary domain (asynchronous commits)?
1. Let’s keep things simple and assume static configuration of secondary domains within the primary

domain.
2. Also assume asynchronous commits from the primary to all secondary domains.
3. Saying that, any primary-secondary interaction does not count into any quorum (majority) decision (not

for primary leader election nor for commit quorum).
4. Only log replication needs to be performed additionally from primary to each secondary leader.
5. A client also does not need to wait for secondary leaders to confirm commit within their secondary

domain.

RaftRecursiveDomains - draft 14

4.4. Inter-domain communication (continued):Inter-domain communication (continued):

How to include secondary leaders into the primary domain?
1. A primary domain does not need to know all secondary nodes from each secondary domain.
2. Instead unique domain IDs would be used to recognise each secondary leader, when primary domain

nodes are being contacted.
3. Using domain IDs, secondary leaders would be differentiated from clients, when connected to primary

leader.

How does a secondary connection affect primary domain?
1. Any secondary leader is always a follower in the primary domain, meaning that secondary domains do

not affect primary domain leader elections in any way. Not even during primary domain configuration
change, when a secondary domain is added or removed from configuration.

2. ...

What if synchronous commit mode was required for some secondary domains?
1. This requirement does not affect any raft leader elections (again, secondary leader is always a follower

in the primary domain).
2. In this case, additional response from each synchronous secondary domain leader is required (beside

the majority of responses from primary followers), to consider a new entry committed.
3. This kind of operation could be very problematic:

a) Slow secondary response causes delays in client commits.
b) Unstable secondary leader causes even more delays in client commits.
c) An outage of a synchronous secondary domain blocks all primary commits. A potential solution

would be to prevent secondary domain’s data usage, until secondary domain reconnects and catches
primary domain. While secondary domain can not be used, primary domain excludes secondary
leader confirmations from commit quorum.

d) ...

RaftRecursiveDomains - draft 15

5.5. Secondary leader operation – asynchronous domain:Secondary leader operation – asynchronous domain:

Within the primary domain, the secondary leader...
● Regarding log replication, the secondary domain leader operates as any other Raft follower in the

primary domain.
● When a secondary domain leader stops receiving heartbeats from the primary domain leader, the

secondary leader starts reconnection procedure to restart receiving heartbeats from the primary
leader.

● While secondary leader reconnection procedure takes place, the secondary leader may be
redirected to the new primary leader, if another primary leader has been elected in the mean time.

Within the secondary domain, the secondary leader…
● Plays normal Raft leader role within its secondary domain.
● Takes primary leader’s input for its secondary domain log replication process.
● Potentially, a secondary leader maintains its extended replication log in the following way:

● Each log entry contains a state machine command and each additional information (i.e. the term)
twice. Once for its primary domain follower role and once for its secondary domain leadership.

● It may be that some of primary domain additional data (like primary term) would have to be replicated
together with state machine command within the secondary domain.

● ...

RaftRecursiveDomains - draft 16

6.6. Primary domain switch-over:Primary domain switch-over:

It would be very interesting to explore the possibility to switch one secondary domain into a
primary one under certain conditions:

1. Only two domains and only two levels?
2. More domains, more levels?
3. ...

RaftRecursiveDomains - draft 17

7.7. Still to cover:Still to cover:

● About affecting Raft’s Safety requirement.
● There should be more said about potential use cases.
● There are a lot of details and scenarios about inter domain interaction to be exposed and

resolved.
● …

RaftRecursiveDomains - draft 18

8.8. Resources:Resources:

• Raft Consensus Algorithm (https://raft.github.io/)

• In Search of an Understandable Consensus Algorithm by Diego Ongaro and John Ousterhout
(https://raft.github.io/raft.pdf)

• Raft user Study (video: https://raft.github.io/raft.pdf,
PDF: https://ramcloud.stanford.edu/~ongaro/userstudy/raft.pdf)

• Diego Ongaro's Ph.D. dissertation (https://github.com/ongardie/dissertation#readme)

• raft-dev mailing list (https://groups.google.com/forum/#!forum/raft-dev)

• Raft “locations” concept proposal (https://groups.google.com/forum/#!topic/raft-dev/o1_vMMUZN4c)

• …

Thank you for your interest!

https://raft.github.io/
https://raft.github.io/raft.pdf
https://raft.github.io/raft.pdf
https://ramcloud.stanford.edu/~ongaro/userstudy/raft.pdf
https://github.com/ongardie/dissertation#readme
https://groups.google.com/forum/#!forum/raft-dev
https://groups.google.com/forum/#!topic/raft-dev/o1_vMMUZN4c

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

